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Effect of radiative losses on the heat transfer from porous fins
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Abstract

The effect of radiation heat transfer on the natural convection heat transfer from a porous fin attached to a vertical isothermal surface has
been investigated. The Rosseland approximation for the radiation heat exchange and the Darcy model for simulating the solid–fluid interactions
in the porous medium have been adapted in this study. The governing equations are reduced to a single nonlinear ordinary differential equation.
A closed form solution for the convection–radiation heat transfer from an infinite fin for low surface temperature parameter, θb, has been found and
presented. The dimensionless temperature profiles, the effectiveness parameter, ϕ Bi, or the average Nusselt number are graphically displayed. The
effect of varying Rayleigh number, Ra∗, the radiation–conduction parameter, Rd, the surface temperature parameter, θb, and the surface-ambient
radiation parameter, R2, are presented. It is found that as the surface temperature parameters increases the radiation effect becomes important and
as Ra∗ increases the radiation effects become less important.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Reducing the size and cost of fins are the prime goals of
fin industry. This requirement is often justified by the high cost
of the high-thermal-conductivity metals that are employed in
the manufacture of finned surfaces and by the cost associated
with the weight of the fin especially in airplanes and motorcy-
cles applications. These goals can be achieved by improving the
heat transfer from fins. This improvement can be accomplished
through the following techniques:

(1) increasing the surface area to volume ratio,
(2) increasing the thermal conductivity of the fin, and
(3) increasing the heat transfer coefficients between the surface

of the solid fin and the surrounding fluid.

Intensive studies have been performed to find the optimum
shape of conventional fins. An overview of the fin optimum
shaping issue has been presented by Snider and Kraus [1].
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Poulikakos and Bejan [2] have shown that optimum fin shapes
and dimensions can be determined also based on purely thermo-
dynamic grounds. Shouman [3] found an exact general solution
to the effect of radiation losses on the heat transfer from con-
ventional solid fins.

Heat transfer in porous media has also gained a considerable
attention of many researchers. Porous substrates of high ther-
mal conductivity have been used to improve the thermal per-
formance of different thermal systems [4]. Porous blocks have
been used to control the flow and heat-transfer characteristics
of an external surface [5]. Kiwan and Al-Nimr [6] numerically
investigated the effect of using porous fins on the heat transfer
from a heated horizontal surface. The basic philosophy behind
using porous fins is to increase the effective area through which
heat converted to ambient fluid. They found that using porous
fin with certain porosity may give same performance as con-
ventional fin and save 100ε̃ of the fin material. More recently,
Kiwan [7] developed a simple model to find the natural convec-
tion heat transfer from porous fin. Also, Kiwan and Zieton [8]
numerically investigated the effect of using porous fins in the
annulus between two concentrated cylinders. They found that
using porous fins enhanced the heat transfer coefficient more
than 70% compared to the use of conventional solid fins. Abu-
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Nomenclature

A cross sectional area
b fin height
Bi Biot number
CF Forchheimer number
cp specific heat
g gravitational acceleration
k thermal conductivity
kr thermal conductivity ratio, keff/kf

K permeability of the porous fin
L fin length
ṁ mass flow rate
P fin perimeter
q heat transfer rate
r far-stream location from center of fin base
R∞ dimensionless location of far-stream, r∞/L

Rd radiation–conduction parameter,
Rd = 4σT 3∞/3βRkeff

R2 surface-ambient radiation parameter,
R2 = 4σεT 3∞b/keff

Ra∗ modified Rayleigh number, gβ(Tb−T∞)K

αν2krb

T temperature at any point
Tb temperature at the fin base
u axial velocity
v normal velocity
v̄w average velocity of the fluid passing through the fin

at any point
W fin width
x axial coordinate

X non-dimensional axial coordinate, x/b

Greek symbols

α thermal diffusivity
β thermal expansion coefficient
βR Rosseland extinction coefficient
ε emissivity
ε̃ porosity
ϕ fin effectiveness
φ Angular displacement, Fig. 2
θ dimensionless temperature
θb surface temperature parameter, θb = Tb/T∞
μ dynamic viscosity
ν kinematic viscosity
σ Stefan–Boltzmann constant
ρ density of the fluid

Subscripts

eff effective properties
f fluid
b conditions at the fin base
s solid
∞ ambient conditions
1 clear fluid domain
2 porous domain

Superscripts
′ derivative with respect to X
Hijleh [9] investigated numerically the effect of using porous
fins on the natural convection heat transfer from a horizontal
cylinder. He concluded that using porous fins provide much
higher heat transfer rates than solid fins. However, he assumed
that the fin thickness is very small (t → 0) and it has a very high
thermal conductivity (i.e., kr → ∞).

The experimental work in this area is very limited. Kim et
al. [10] investigated experimentally the impact of using porous
fins on the heat transfer and flow characteristics in plate fin heat
exchanger. They found under certain conditions the porous fins
give better heat transfer than louvered fins.

Thermal radiation plays an important role in situations
where convection heat transfer coefficient is small and thus
cannot be neglected. Ali et al. [11] studied the convection–
radiation heat transfer by convection and radiation from a semi-
infinite horizontal plate. They considered gray gas that emits
and absorbs but does not scatter thermal radiation. Hossain and
Takhar [12] investigated the effect of radiation on mixed con-
vection flow of optically thick viscous and incompressible fluid
over an isothermal vertical plate. They employed the Rosse-
land diffusion approximation. Hossain and Alim [13] analyzed
the convection–conduction–radiation interaction in the natural
convective flow along a thin vertical cylinder. They used local
non-similarity method and the implicit finite difference scheme
with Keller box elimination method. Yih [14] has studied the
effect of radiation on natural convection over an isothermal
vertical cylinder embedded in a saturated porous medium us-
ing the modified Keller-box method to solve the resulted PDE
where Darcy model is used to simulate the fluid flow in the
porous medium. The effect of varying the radiation parame-
ter (Rd ∼ 0.1–10) on the heat transfer is presented. Cherif and
Sifaoui [15] have considered radiation along with conduction
and convection to predict the heat transfer behavior in a cylin-
drical enclosure. Badruddin et al. [16] studied the radiation
effect on the natural convection heat transfer through a verti-
cal annulus embedded in a porous medium. They presented the
effect of radiation parameter (Rd = 0–1), aspect ratio and ra-
dius on the average Nusselt number and they found that the
average Nusselt number increased significantly with increasing
the radiation parameter. Hossain and Pop [17] studied the radi-
ation effects on free convection over a vertical plate embedded
in a porous medium with high porosity. They presented the ef-
fect of several parameters on the local skin friction and the local
rate of heat transfer. It should be mentioned that references [13–
17] deal with one fluid domain (i.e., porous domain) and they
invoked the Local Thermal Equilibrium (LTE) assumption in
writing the energy equation and they used Rosseland approxi-
mation to model the radiation heat transfer.
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In the present work it is intended to develop a simple model
which is able to analyze the effect of radiation losses on the
natural convection heat transfer from porous fins. It is also an-
ticipated to study the effect of operating and design parameters
on the thermal performance of porous fins and compare the re-
sults with that obtained in available literature. It should be noted
here that unlike Ref. [13–17] the present analysis assumes that
heat transfer occurs within the porous media and between the
porous media and the surroundings.

2. Analysis

Fig. 1 shows a simple rectangular fin attached to a vertical
constant temperature wall. The cross-sectional area of the fin
is constant. Being porous, the fin allows for the flow to infil-
trate through it. In order to simplify the solution, the following
assumptions are considered:

(1) the porous medium is homogeneous, isotropic, and satu-
rated with a single-phase fluid,

(2) both the fluid and the solid matrix have constant physical
properties except the density in the buoyancy term where
Boussenesq approximation is used,

(3) the temperature inside the fin is only function of x,
(4) the interactions between the porous medium and the clear

fluid can be simulated by the Darcy formulation, and
(5) following the work of [11–17] and in order to reduce the

complexity of the problem the radiative heat flux inside the
porous medium is assumed to behave as an optically thick
gas.

It can be argued that if the gas filling the porous material is
optically thick then the porous media containing this gas can be
treated as optically thick. But if the gas is semi transparent or
transparent then without experimental data and farther analysis
on this issue it is difficult to decide how to treat a porous media

Fig. 1. Schematic diagram for the problem under consideration.
containing such gases. Therefore, this study is limited to porous
medium that behave as optically thick gas.

The energy balance to the slice segment of the fin of thick-
ness �x, shown in Fig. 1, requires that

q(x) − q(x + �x) = ṁcp

(
T (x) − T∞

) + hP�x(1 − ε̃)

+ P�xσε

(
T 4(x) − α

ε
T 4∞

)
(1)

The effect of radiation heat transfer appears in two terms of
Eq. (1); the left-hand side which represents the net heat trans-
fers from the base to the element by conduction and radiation
and the last term on the right-hand side of Eq. (1) which repre-
sents the net exchange of heat by radiation between the porous
fin and the surrounding at T∞. For the sake of simplicity it will
be assumed that ε = α. The first term on the right-hand side
represents the amount of heat energy transferred by the fluid
passing through the porous media. This fluid is induced by the
buoyancy force created due to the temperature difference be-
tween the fin and the surroundings. In the limit when ε̃ → 0
and K → 0 (i.e., ṁ = 0), Eq. (1) reduces to the classical solid
fin problem with radiation effect reported by Ref. [3].

The mass flow rate of the fluid passing through the porous
material can be written as,

ṁ = ρv̄w�xW (2)

The value of v̄w should be estimated from the consideration
of the flow in the porous medium. Referring to assumption (4)
above, Dary’s model gives,

v̄w(x) = gKβ

ν

(
T (x) − T∞

)
(3)

The energy flux vector of combined radiation and conduction at
the base of the fin can be expressed as:

q = qconduction + qradiation (4)

where the conduction term can be expressed, using Fourier’s
law of conduction, as

qconduction = −keffAb

dT

dx
(5)

and the radiation heat flux term is expressed by the Rosseland
diffusion approximation proposed by Siegel and Howell [18] as

qradiation = − 4σ

3βR

dT 4

dx
(6)

The treatment of the radiation heat transfer for non-optically
thick gases is more complicated and can be found in [18,19].
Substitution of Eqs. (4)–(6) into Eq. (1) gives,

d

dx

[
dT

dx
+ 4σ

3βRkeff

dT 4

dx

]

= ρcpgKβ

bνkeff

(
T (x) − T∞

)2 + hP (1 − ε̃)

keffAb

(
T (x) − T∞

)

+ σε P (
T 4(x) − T 4∞

)
(7)
keff Ab
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Eq. (7) represents a second order nonlinear ordinary differ-
ential equation. To solve this equation two boundary conditions
are needed. The temperature at the base of the fin is Tb . Then

T (0) = Tb (8)

The second boundary condition depends on the situation at
the fin tip. Two cases are considered (1) infinitely long fin,
(2) finite-length fin with insulated tip.

The rate of heat transferred from the fin is calculated at fin
base as

qb = −keffAb

(
dT

dx

)
x=0

− 4σAb

3βR

(
dT 4

dx

)
x=0

(9)

The following is the analysis for two cases considered in this
study.

Case 1: Infinitely long fin with low θb .

In the situation where the temperature differences within the
flow are assumed to be sufficiently small then the term T 4 may
be expressed as a linear function of temperature

T 4 ∼= 4T 3∞T − 3T 4∞ (10)

Introducing the non-dimensional temperature θ = T (x)−T∞
Tb−T∞ and

X = x
b

into Eq. (7) and using Eq. (10) yields

θ ′′(1 + 4Rd) = Ra∗θ2 + Pb

Ab

(
h(1 − ε̃)

keff
+ R2

)
θ (11)

where

Ra∗ = gβ(Tb − T∞)Kb

ανkr

, Rd = 4σT 3∞
3βRkeff

R2 = 4σεT 3∞b

keff
(12)

Multiplying Eq. (11) by θ ′ and then integrating the results not-
ing that for infinitely long fin θ(X → ∞) = 0 and θ ′(X →
∞) = 0, yields

dθ

dX
= −

[
1

(1 + 4Rd)

(
2

3
Ra∗θ3

+ Pb

Ab

(
h(1 − ε̃)

keff
+ R2

)
θ2

)]1/2

(13)

Apply Eq. (13) at X = 0 and noting that θ(0) = 1, yields

dθ

dX

∣∣∣∣
X=0

= −
[

1

(1 + 4Rd)

(
2

3
Ra∗

+ Pb

Ab

(
h(1 − ε̃)

keff
+ R2

))]1/2

(14)

Defining fin effectiveness, ϕ, as the ratio of the rate of heat
transfer from the fin, qb, to the rate of heat transfer that would
take place from the fin base area without the extended surface
and without radiation effect, qbw for the same temperature dif-
ference. The fin effectiveness can be written in terms of the
dimensionless parameters defined earlier as;

ϕ = qb

q
= −keff(1 + 4Rd)

hb

dθ

dX

∣∣∣∣

bw X=0
and we can also define the average Nusselt number as

Nu = qb

keffAb(Tb − T∞)

= −(1 + 4Rd)
dθ

dX

∣∣∣∣
X=0

= ϕhb

keff
ϕ Bi

= −
[
(1 + 4Rd)

(
2

3
Ra∗ + Pb

Ab

(
h(1 − ε̃)

keff
+ R2

))]1/2

(15)

To find the temperature distribution along the fin, integrate
Eq. (13) and apply θ(0) = 1, yields

X = 1√
N

log
(
√

N + Mθ − √
N )(

√
N + M + √

N )

(
√

N + Mθ + √
N )(

√
N + M − √

N )
(16)

where

M = 2Ra∗

3(1 + 4Rd)
and

N = Pb

Ab(1 + 4Rd)

(
h(1 − ε̃)

keff
+ R2

)

Eqs. (15) and (16) represent a closed form solution to the
natural convection heat transfer from an infinite porous fin in-
cluding radiation effects.

Case 2: Fins with any value of θb .

In the situations where θb is large then the approximation
expressed by Eq. (10) is not valid. In this case, Eq. (7) can be
manipulated to obtain

θ ′′(1 + 4Rd
{
θ(θb − 1) + 1

}3)
= Ra∗θ2 − 12Rd(θb − 1)

{
θ(θb − 1) + 1

}2
θ ′2

+ R2

(θb − 1)

Pb

Ab

([
(θb − 1)θ + 1

]4 − 1
)

+ h(1 − ε̃)Pb

keffAb

θ (17)

where θb = Tb

T∞ . The above equation is a second order nonlinear
ODE subjected to the boundary conditions:{

θ(0) = 1, and θ ′(X → ∞) = 0 infinite fin

θ(0) = 1, and θ ′(X = L/b) = 0 insulated-tip fin
(18)

And the heat transfer from the base of the fin can be expressed
as

Nu = qbb

keffAb(Tb − T∞)
= −(

1 + 4Rd θ3
b

)
θ ′(0) = ϕ Bi (19)

3. Numerical solution procedure

The nonlinear differential equations given by Eq. (17) along
with the relevant boundary conditions are solved using a vari-
able order and variable step size finite difference method with
deferred corrections. The solution method is based on the sub-
program of Pereyra [20]. The first step in the solution is to
reduce the governing equations to a system of first order dif-
ferential equations. The basic discretization of the first order
differential equations is the trapezoidal rule over a non-uniform
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mesh. This mesh is chosen adaptively, to make the local error
approximately the same size everywhere. Global error estimates
are produced to control the computation. The resulting nonlin-
ear algebraic system is solved by Newton’s method with step
control. The linearized system of equations is solved by Gauss
elimination.

To verify the validity and the accuracy of the present analy-
sis, results of the average Nusselt numbers were compared
to those of previous investigations. The results of the similar
analysis were compared with that obtained by Kiwan and Al-
Nimr [6] and reported in [7]. The results showed an agreement
within 10%. On the other hand, The value of Nu for the nat-
ural convection in a vertical plate embedded in a porous media
is 0.888 [21] while Eq. (15) gives Nu = 0.8165. Badruddin et
al. [16] showed that when Rd = 0.33, the value of Nu = 2.741
while Eq. (15) gives Nu = 2.91. These comparisons show that
the present analysis gives a good agreement with published
data.

A further validation is carried out in this study by comparing
the results of the present analysis to that obtained by numer-
ically solving the problem under consideration using Darcy–
Brinkman–Forchheimer model without radiation effects.

3.1. CFD solution

The problem under consideration is steady, two-dimensional
laminar flow through a homogeneous porous matrix and fluid
with constant thermo-physical properties. All fluid properties
are considered to be constant except for the density in the body
force where Boussenesq approximation is used. The govern-
ing equations that describe the case are divided into two zones,
the clear fluid zone and the porous zone. Therefore, two sets
of equations are considered (continuity, momentum and energy
equations). A set for clear domain (1) and another set for porous
domain (2).

Governing equations. Mass conservation in clear domain
(fluid) (1):

∂u1

∂x
+ ∂v1

∂y
= 0 (20)

The momentum equations in the clear domain is

ρf

(
u1

∂u1

∂x
+ v1

∂u1

∂y

)

= −∂p1

∂x
+ μ

(
∂2u1

∂x2
+ ∂2u1

∂y2

)
+ ρf g(T1 − T∞) (21)

ρf

(
u1

∂v1

∂x
+ v1

∂v1

∂y

)

= −∂p1

∂y
+ μ

(
∂2v1

∂x2
+ ∂2v1

∂y2

)
+ ρf g(T1 − T∞) (22)

The energy equation in the clear domain without radiation ef-
fect is

ρf cp

(
u1

∂T1

∂x
+ v1

∂T1

∂y

)
= kf

(
∂2T1

∂x2
+ ∂2T1

∂y2

)
(23)

Momentum equations in the porous domain (Darcy–Brinkman–
Forchheimer equations)
ρf

(
u2

∂u2

∂x
+ v2

∂u2

∂y

)

= −∂p2

∂x
+ μ

(
∂2u2

∂x2
+ ∂2u2

∂y2

)
+ ρf g(T2 − T∞)

− μ

K
u2 − CF ρf√

K

√
u2

2 + v2
2u2 (24)

ρf

(
u2

∂v2

∂x
+ v2

∂v2

∂y

)

= −∂p2

∂y
+ μ

(
∂2v2

∂x2
+ ∂2v2

∂y2

)
+ ρf g(T2 − T∞)

− μ

K
v2 − CF ρf√

K

√
u2

2 + v2
2v2 (25)

The energy equation in the porous domain with no radiation
effects is

ρf cp

(
u2

∂T2

∂x
+ v2

∂T2

∂y

)
= keff

(
∂2T2

∂x2
+ ∂2T2

∂y2

)
(26)

Since the effect of inertia losses in natural convection flow is
small the value of CF in Eqs. (24), (25) is taken to be zero.
Eqs. (20)–(26) are subjected to the following conditions:

(1) On the vertical surface, u = v = 0. At fin base T2 = Tb

and on the rest of the surface T1 = T∞. This condition is
imposed for comparison purposes to ensure that the heat
transfer from the surface takes place through the fin only.

(2) Far-stream from the surface, following the work of Kuehn
and Goldstein [22] and Abu-Hijleh et al. [9], the far-stream
boundary condition is divided into an inflow (φ < 150◦)
and an outflow (φ > 150◦) regions, Fig. 2(a). The far-
stream temperature boundary conditions are T1 = T∞ and
∂T1
∂r

= 0 for the inflow and outflow regions, respectively.
(3) At the interface between the fin and the clear fluid, the

following conditions are applied [8] u1 = u2, v1 = v2,
p1 = p2, T1 = T2, kf

∂T1
∂y

= ks
∂T2
∂y

,

μf

∂v1

∂y
= μeff

∂v2

∂y
, and

(
∂v1

∂x
+ ∂u1

∂y

)
=

(
∂v2

∂x
+ ∂u2

∂y

)
(27)

Eqs. (20)–(26) along with the relevant boundary conditions
are solved using a finite volume solver, Fluent [23]. A simple
two-dimensional mesh clustered near walls and at the inter-
face between clear fluid and porous medium is used as shown
in Figs. 2(b), 2(c). The pressure field is calculated using the
SIMPLE algorithm. The iterative solution is considered to have
converged when the maximum values of the normalized ab-
solute residuals across all nodes are less than 10−6.

The far-stream boundary condition placement (R∞) and the
number of grid points in both radial and tangential directions
are needed to be predefined for the solution method. Extensive
testing was carried out in order to determine the effect of each
of these parameters on the solution. This was done to insure
that the solution obtained was independent of these predefined
parameters. The testing included varying the value of R∞ from
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Fig. 2. Grid system for the CFD solution.
10 to 20. For each the value of R∞ the mesh independent so-
lution was obtained using adaptive grid strategy. A grid of 40
by 80 points in both radial and tangential directions was used
as a basic grid. Then, for each case, a number of grid points are
added near the regions where the temperature gradient is higher
than 0.01.

The values of the average Nusselt number for the case of
Ra∗ = 813, using R∞ = 10, 18 and 20 are 23.59, 23.41, 23.40,
respectively. These numbers indicate that the use of R∞ = 18
is enough to satisfy the boundary condition at far-stream.

Table 1 shows a comparison between the values of aver-
age Nusselt number obtained from the solution of Eq. (15) and
that obtained from the CFD solution for an infinitely long fin
without radiation effects. It can be seen form this table that the
approximate method compares very well with the CFD results.

4. Results and discussion

The numerical results of fin effectiveness parameter are ob-
tained for representative values of the parameters Rd, R2 and
surface temperature parameters θb against the Rayleigh num-
bers Ra∗. It should be noted here that the value of Rd ranges
around 0.033 to 0.1 for both CO2 in the temperature range 38–
350 ◦C and NH3 vapor in the temperature range 50–205 ◦C at



1052 S. Kiwan / International Journal of Thermal Sciences 46 (2007) 1046–1055
Table 1
The average Nusselt number at fin base

Ra∗ Nu
Eq. (15)
Rd = R2 = 0, ε̃ = 1

Nu
CFD
no radiation

θ ′(0) θ ′(0)

54 6.00 6.20
272 13.47 13.20
435 17.04 16.78
474 17.78 18.48
542 19.01 19.61
610 20.17 20.68
678 21.26 21.63
813 23.29 23.41

Fig. 3. The distribution of the dimensionless axial temperature along an infinite
fin for different Ra∗ (R2 = 0.01, Rd = 0.01, W/b = 10).

1 atm, whereas for water vapor in the temperature range 105–
480 ◦C the Rd values lie between 0.02 and 0.3. Also, it should
be noted that for foamed Aluminum porous fins, the value of
K is in the range 10−6–10−8, the porosity is in the range 0.92–
0.98 [10], therefore, the surface convection term is small and is
neglected.

For practical applications, for example, foamed Aluminum
porous fin [10] (ks = 200 W m−1 K−1) of 0.5 porosity filled
with a fluid whose properties are ks = 0.033 W m−1 K−1 and
βR = 0.01 m−1 the values of Rd and R2 are 3.24 and 9.7 ×
10−3, respectively, when the surrounding temperature is at
350 K and black body surfaces. The value of keff is calculated
using the relation keff = ε̃kf + (1 − ε̃)ks [6].

The variation of the non-dimensional temperature distribu-
tion and its gradient along an infinite fin for different value of
Ra∗ is shown in Figs. 3 and 4, respectively. It is clear that in-
creasing Ra∗ increases the rate of heat removal from the fin and
reduces the effective length of the fin. The effect of changing
the radiation parameters within the porous fin, i.e., Rd and θb,
is indicated by Fig. 5. It should be noted that large values of
the radiation–conduction parameter, Rd, means that the radia-
Fig. 4. The distribution of the dimensionless axial temperature along an infinite
fin for different Ra∗ (R2 = 0.01, Rd = 0.01, W/b = 10).

Fig. 5. The variation of Nu/Ra∗1/2 with Ra∗ for different Rd and θb for infinite
fin (R2 = 0.01, W/b = 10) (· · · · · · θb = 1.7, - - - θb = 1.3, −−−− θb = 1.1).

tion mode dominates and vise versa. As Rd approaches zero
the convection mode dominates. On the other hand, when the
change in the value of θb is independent of the temperature dif-
ference between the fin base and the ambient, then the change
in θb affects only the radiation heat transfer mode (as indicated
by Eq. (17)). Several observations can be obtained from this fig-
ure: (1) at constant value of Ra∗, the heat transfer from the fin
base increases as Rd increases, (2) the radiation losses are im-
portant at low Ra∗ for all values of Rd and θb indicating that
the radiation and convection heat transfer are of the same or-
der of magnitude, (3) the effect of radiation on the heat transfer
from fin base increases as the value of θb increases, and (4)
the radiation effect is significant for large values of Rd regard-
less of the value of Ra∗ in the investigated range. In order to
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Fig. 6. The variation of Nu/Ra∗1/2 against the variation of θb for different
values of Rd for insulated tip fin (R2 = 0.01, X = 10).

make this result valuable to practical applications, the percent-
age increase in heat transfer from the fin due to radiation effects
is calculated. Thus, when radiation effects are considered with
θb = 1.7, Ra∗ > 2, R2 = 0.01 and W/b = 10 for infinitely long
fin the total heat transfer from fin increases by 7%, 13.7%, and
63% when Rd increases form 0.001, 0.01, and 0.1, respectively.
Whereas, when θb = 1.1, the total heat transfer from the same
fin increases by 3.8%, 6.0%, and 26% when Rd increases form
0.001, 0.01, and 0.1, respectively.

Fig. 6 depicts the effect of Rd and θb on the averaged Nu (i.e.,
fin effectiveness, ϕ Bi) for an insulated tip fin. At low values
of Rd, radiation has almost no effect on the heat transfer from
the fin. While at large values of Rd, the heat loss from the fin
increases with increasing the value of θb.

To investigate the influence of the radiation parameters on
the conduction losses and radiation losses, Fig. 7 is displayed.
The conduction losses at fin base decreases while radiation
losses increase as θb increases. Eq. (19) shows that the con-
duction losses decreases with decreasing θ ′(0) for any value
of θb , however, the radiation losses depends on both the value
θ ′(0) and θb. It is clear from Fig. 7 that increasing the value of
θb increases the radiation losses. That is the effect of increas-
ing radiation losses due to increasing θb dominates the effect of
reducing the radiation losses due to decreasing θ ′(0). The fact
that the convection heat transfer depends on the first power of
the temperature difference while the radiation heat transfer de-
pends on the fourth power of the absolute temperatures makes
the interaction between these effects is rather complicated. In
general, introducing the radiation effects increase the heat trans-
fer from the fin compared with the pure convection case and this
increase (enhancement) improves as θb increases, as indicated
by Fig. 7.

Figs. 8–11 summarize the effect of different parameters on
the heat transfer from an insulated tip fin for a range of Ra∗. R2

represents the parameter that controls the radiation heat trans-
Fig. 7. The effect of changing the surface temperature parameter on conduction
and radiation losses for an insulated tip fin (R2 = 0.01, Rd = 0.1, X = 10,
Ra∗ = 50).

Fig. 8. The variation of Nu with the variation of Ra∗ at different values of Rd
for insulated tip fin (R2 = 0.01, X = 10, θb = 1.3).

fer between the surface of the fin and the surroundings. These
figures indicate that increasing Rd, or R2 or θb result in an in-
crease in the value of Nu for any value of Ra∗ and that the
radiation effect is insignificant compared to the heat convection
heat transfer when the values of Rd and R2 are less than 0.01
and 0.1, respectively. An increase in the value of R2 for certain
T∞ can be achieved by reducing the effective thermal conduc-
tivity of the fin (this can be achieved by increasing fin porosity)
or increasing fin length or increasing the emissivity of the fin
surface (which is around one for optically thick medium).

Fig. 11 displays the variation of Nu/(Ra∗(1 + 4Rd θ3
b )) with

the variation of θb . It is clear that as Ra∗ increases for fixed
value of θb , the values of Nu/(Ra∗(1 + 4Rd θ3)) reaches an as-
b
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Fig. 9. The variation of Nu with the variation of Ra∗ at different value of θb

(R2 = 0.1, X = 10, Rd = 0.3).

Fig. 10. The effect of the radiation parameter R2 on Nu for insulated tip fin
(X = 10, Rd = 0.3, θb = 1.3).

ymptotic value. This asymptotic value depends on the values
of θb.

5. Conclusions

The problem of laminar natural convection heat transfer
from a porous fin attached to vertical surface was studied. The
effect of radiation heat transfer was introduced using the Rosse-
land approximation. Simplified assumptions were introduced to
the problem resulted in obtaining a closed-form solution for an
infinitely long fin with low surface temperature parameter. The
closed-form solution and a CFD solution are compared for a
case of infinitely long fin without radiation effects and an ex-
cellent agreement is obtained. On the other hand, a nonlinear
Fig. 11. Effect of radiation parameters Rd and θb on the normalized Nu for
insulated tip fin (R2 = 0.01, X = 10, Rd = 0.3).

ODE is obtained when the surface temperature parameter, θb,
is large. The effect of different radiation parameters on Nu over
a wide range of Ra∗ is investigated. In general, including radi-
ation effects increases the heat transfer from the fin, however,
these effects are significant at low Ra∗ regardless of the values
of θb and Rd. It is also found that at certain conditions and when
Rd = 1.1 and θb = 1.7 the heat transfer from the fin increases
as much as 63% more than the heat transfer from the fin by con-
vection only. It is also found that as Rd or R2 or θb increase, the
heat transfer from fin increases.
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